LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

SECOND SEMESTER - APRIL 2010
PH 2812 - MATHEMATICAL PHYSICS

Date \& Time: 21/04/2010 / 1:00-4:00
Dept. No.
Max. : 100 Marks

PART A

Answer ALL questions

$(10 \times 2 \mathrm{~m}=20 \mathrm{~m})$

1) Integrate Re z from 0 to $1+2 \mathrm{i}$ along the shortest straight line path.
2) Determine the residue at $\mathrm{Z}=0$ and at $\mathrm{Z}=\mathrm{i}$ of the complex function $\mathrm{f}(\mathrm{z})=\frac{9 \mathrm{Z}+\mathrm{i}}{\mathrm{Z}\left(\mathrm{Z}^{2}+1\right)}$.
3) Express the function $\mathrm{f}(\mathrm{t})=2$ if $0<\mathrm{t}<\pi, \mathrm{f}(\mathrm{t})=0$ if $\pi<\mathrm{t}<2 \pi$ and $\mathrm{f}(\mathrm{t})=\sin \mathrm{t}$ if $\mathrm{t}>2 \pi$ in terms of the unit step function.
4) Evaluate the Fourier transform of the first derivative of a function $f(x)$.
5) Write down (i) one dimensional heat equation and (ii) two dimensional wave equation. Explain the symbols used.
6) What are the possible two initial conditions in the transverse vibration of a stretched string? Explain the symbols used.
7) Use the Rodrigue's formula for the Legendre polynomial to evaluate the $3^{\text {rd }}$ order polynomial.
8) Write down the expression for the Bessel function $\mathrm{J}_{0}(\mathrm{x})$ of zeroth order.
9) List the four properties that are required for a group multiplication.
10) What is irreducible representation of a group?

PART B

Answer any FOUR questions

$$
(4 \times 71 / 2 \mathrm{~m}=30 \mathrm{~m})
$$

11) Show that the function $u(x, y)=4 x y-3 x+2$ is harmonic. Construct the corresponding analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{i} \mathrm{v}(\mathrm{x}, \mathrm{y})$.
12) Solve the initial value problem $\frac{d^{2} y}{d t^{2}}+25 y=10 \cos 5 t, y(0)=2, \frac{d y(0)}{d t}=0$ by the Laplace transforms.
13) Using the method of separation of variables, solve the partial differential equations (i) $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}$ and (ii) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=(x+y) u$, where u is a function of x and $\mathrm{y} \cdot(3+41 / 2 \mathrm{~m})$
14) Establish the orthogonal properties of the Hermite polynomial, viz., $\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) H_{n}(x) H_{m}(x)=\sqrt{\pi} 2^{n} n!\delta_{m n}$ with the use of the generating function of the polynomial. $\left(3+4^{1 / 2} \mathrm{~m}\right)$
15) Work out the multiplication table of the symmetry group of the proper covering operations of a square $\left(\mathrm{D}_{4}\right)$. Write down all the subgroups and divide the group elements into classes. What are the allowed dimensionalities of the representation matrices of the group?

PART - C

Answer any FOUR questions

16) (a) Using the contour integration, evaluate the following real integral

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\cos 3 x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x \tag{1/2}
\end{equation*}
$$

(b) Evaluate the following contour integral:

$$
\begin{equation*}
\oint_{C} \frac{d z}{z^{2}+1} \tag{6m}
\end{equation*}
$$

with C : (a) $|\mathrm{Z}+\mathrm{i}|=1$, and (b) $|\mathrm{Z}-\mathrm{i}|=1$, counterclockwise.
17) (a) Represent $\mathrm{f}(\mathrm{t})=\sin 2 \mathrm{t}, 2 \pi<\mathrm{t}<4 \pi$ and $\mathrm{f}(\mathrm{t})=0$ otherwise, in terms of unit step function and find its Laplace transform.
($61 / 2 \mathrm{~m}$)
(b) Solve $y^{\prime \prime}+4 y^{\prime}+4 y=t^{2} e^{-2 t}$ with initial conditions $y(0)=0, y^{\prime}(0)=0$ by Laplace transforms, where $y^{\prime}=\frac{d y}{d t}$ and $y^{\prime \prime}=\frac{d^{2} y}{d t^{2}}$.
18) Solve the one- dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by the separation of variable technique and the use of Fourier series. The boundary conditions are $u(0, t)=0$ and $u(L, t)=0$ for all t and the initial conditions are $u(x, 0)=f(x)$ and $\frac{\partial u}{\partial t}=g(x)$ at $t=0$. (Assume that $u(x, t)$ to represent the deflection of stretched string and the string is fixed at the ends $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$)
19) (a) Outline the the power series method of solving the Legendre differential equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0 .
$$

($61 / 2 \mathrm{~m}$)
(b) Establish the orthonormality relation $\int_{-1}^{+1} \mathrm{P}_{\mathrm{n}}(\mathrm{x}) \mathrm{P}_{\mathrm{m}}(\mathrm{x}) \mathrm{dx}=\frac{2}{2 n+1} \delta_{n m}$, where $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ is the Legendre polynomial of order n.
20) (a) Obtain the transformation matrices of the symmetry elements (i) for the axis of symmetry and (ii) for the improper axis of symmetry .
(b)Enumerate and explain the symmetry elements of $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and NH_{3} molecules. (6 m)

